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The phase behavior of semiflexible-coil diblock copolymer melts is studied by solving the self-consistent

field theory (SCFT) equations of wormlike chains. Significant improvement of numerical accuracy and

stability is achieved by a hybrid numerical implementation of SCFT, in which the space-dependent

functions are treated using a spectral method and the orientation-dependent functions are discretized

on a unit sphere (3D Euclidean space) with an icosahedron triangular mesh. The angular Laplacian is

solved in real-space using a finite volume algorithm. Phase diagrams of the model system are

constructed from SCFT. Phase transitions between various smectic phases such as monolayer and

bilayer smectic-A, monolayer and bilayer smectic-C, as well as folded smectic phases, are predicted. In

particular, the stability of the monolayer and bilayer smectic phases is associated with the competition

between interfacial energy and coil-stretching entropy, which strongly depends on the interplay

between orientational interaction and microphase separation and the topological disparity between the

semiflexible and coil blocks.
Introduction

Rod-coil block copolymers have attracted increasing recent

attention because this class of polymers are essential in a wide

range of applications1 in areas such as organic electronics,2

biotechnology, and high-performance resins. In these macro-

molecules, chain rigidity usually originates from p-conjugation,

helical secondary structures or aromatic groups, leading to

orientation order and liquid crystalline behavior. Compared with

the classical coil-coil block copolymers, rod-coil block copoly-

mers exhibit more complex phase behavior due to the coupling

between microphase separation and liquid-crystalline ordering.

A variety of rod-coil block copolymers have been experimentally

observed to self-assemble into a series of novel structures,

including layered smectics, arrowheads, wavy lamellae, zig-

zags,3,4 perforated lamellae5 as well as folded helical peptides.6–11

A generic observation is that, compared with corresponding coil-

coil block copolymers, the liquid-crystalline interactions tend to

stabilize planar interfaces, leading to a large lamellar region in

the phase diagram.12–16 On the other hand, exploring the whole

phase space of rod-coil block copolymers presents a formidable

task due to a large number of controlling parameters. For

example, the rod and coil blocks have different scaling behaviors

as a function of molecular weight N: the unperturbed coil size

scales as N1/2 whereas the rod block has a characterize length that

scales linearly with N. This difference in size-scaling creates

a packing frustration, thus requires an additional parameter to

describe the size mismatch between the rods and coils. In addi-

tion, the interplay between the liquid-crystalline ordering of the

rod blocks and the microphase separation of the rods and coils
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leads to rich and complex phase behavior. Furthermore, the

smectic structures can be classified into smectic-A and smectic-C

according to the tilt angle q between the nematic direction and

lamellar normal, as well as monolayer, bilayer and folded

structures, according to the geometric arrangement of rods.

These various smectic microstructures can be greatly affected by

the size asymmetry between the rods and coils, as well as the

coupling between the isotropic and anisotropic interactions.

Technological applications of rod-coil block copolymers

strongly depend on their self-assembled nanostructure and phase

behavior. Theoretical studies on these polymers provide conve-

nient means to understand the phase behavior.17 In what follows

we mainly focus on the study of block copolymers using the self-

consistent field theory (SCFT), which is a powerful tool for

understanding the equilibrium thermodynamics of polymeric

systems. Within the SCFT framework, the statistical mechanics

of many polymers is transformed into a field theory. The essence

of the SCFT includes two ingredients: the statistics of chain

conformation described by a propagator q(r,s), and the interac-

tions between molecules modeled by a mean-field potential. In

contrast to the simple Gaussian chain model, the wormlike chain

model is more general for describing the conformation of poly-

mer chains with a degree of rigidity.18 Within the wormlike-chain

like model, the state of a segment is specified by its position r and

orientation u. In this case, the chain propagator q(r,u,s) satisfies

a diffusion-like equation in the six-dimensional (6D) space

composed of three-dimensional (3D) position space, two addi-

tional internal coordinates describing the segment orientation,

and the chain arc length s. Due to the extra internal coordinates,

the numerical solution of the 6D diffusion equation presents

considerable computational challenges. Additionally, semi-

flexible or rigid units in polymer chains can form liquid crystal-

line nematic and smectic phases, thus possessing spontaneous

orientational order commonly described by a nematic director n.

Typically, the anisotropic orientational interactions are
Soft Matter, 2011, 7, 929–938 | 929
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described by the Onsager’s excluded volume theory19 or the

Maier–Saupe theory.20–22 Although solving the SCFT equations

for block copolymers containing semiflexible blocks is a chal-

lenging task, a number of numerical implementations of the

SCFT based on a wormlike chain model have been presented in

the literature.17,18,23–25

One numerical approach to solving the SCFT equations for

semiflexible chains is based on the spectral method, in which

orientation-dependent functions are expanded in terms of the

spherical harmonics Yl,m(u), as used by a number of groups.18,24–27

This numerical method can be effective for simple cases, but the

computation in this approach can be exceedingly costly when

a full expansion in terms of Yl,m(u) is required. For simplicity, the

previous studies assumed m ¼ 0, thus restricting their results to

phases with axial-symmetries such as nematic and smectic-A. A

complementary numerical implementation based on a real-space

method is presented in our previous work.17 The real-space

method utilizes the fact that orientation variable is a unit vector u

located on a unit sphere in a 3D Euclidean space, which can be

discretized into a set of nearly uniform triangular lattice points

generated by the spherical projection of the regular icosahedron.

The diffusion-like equation for q(r,u,s) is solved in real-space by

performing a forward time centered space scheme for s and r, and

the finite volume algorithm for V2
uq(r,u,s) on the unit spherical

surface. This approach is a true 3D Euclidean space consider-

ation of the orientation variable, thus the smectic-C phase can be

obtained easily. On the other hand, a finite difference method is

applied for both r and s in our previous study,17 in which the

solution accuracy and stability are limited.

In the current paper, as a methodological improvement of our

previous work,17 we report a hybrid numerical approach to the

SCFT of semiflexible-coil diblock copolymers. In this method,

the spatial dependence of the SCFT functions is expanded in

terms of a series of basis functions, instead of finite difference

method in real space, to improve the numerical accuracy and

stability. Furthermore the energetics of the system includes the

orientational interaction between the rods characterized by

Maier–Saupe theory instead of Onsager type in our previous

paper,17 and the enthalpic interaction between rods and coils

modeled by Flory–Huggins interactions. This treatment of the

orientational interactions is generally adopted in rod-coil

melts,26–28 which is more relevant to experimental conditions.

Furthermore, this model can be used to describe the coupling of

isotropic microphase separation and anisotropic orientation

ordering. In the current model, the self-assembly and liquid-

crystalline ordering of rod-coil copolymers are governed by four

parameters: the Flory–Huggins interaction cN, the Maier–Saupe

interaction mN, the coil volume fraction f, and the size asym-

metry ratio between rods and coils b. In what follows we focus on

the effect of interplay between microphase separation and

orientational interaction characterized by the ratio m/c, as well as

size asymmetry ratio b, on the phase behavior and various

microstructures of the smectic phases.
Theoretical model and numerical algorithm

We consider an incompressible melt composed of n mono-

disperse AB semiflexible-coil diblock copolymer chains confined

in a volume V. Each coil A-block has Nc segments with
930 | Soft Matter, 2011, 7, 929–938
a statistical segment length a, and each wormlike B-block has NR

segments characterized by a statistical length b and a diameter d.

For simplicity, the A and B segments are assumed to have equal

monomeric volume, a3 ¼ bd2 ¼ 1/r0, thus the volume fraction of

the coil-blocks is f ¼ NC

NC þNR

¼ NC

N
and the volume fraction of

the wormlike blocks is 1 � f. The conformation of the ath chain

is represented by a space curve ra(s) (s is the contour length of the

chain scaled by N), where s ¼ 0 � f corresponding to the A-

blocks modeled as a Gaussian chain, and s¼ f� 1 corresponding

to the B-blocks modeled as a wormlike chain. A unit vector,

uaðsÞ ¼
1

Nb

d

ds
raðsÞ, is used to denote the orientation of the ath

chain at contour position s, which ensures that each segment has

a fixed contour length b. Furthermore, the geometrical size

asymmetry between the wormlike and coil blocks is characterized

by a parameter b ¼ bN/a(N/6)1/2.

For the flexible A-blocks, the chain propagator, qA(r,s),

satisfies a modified diffusion equation,
v

vs
qAðr; sÞ ¼ V2qAðr; sÞ � wAðrÞqAðr; sÞ; ð0 # s # f Þ (1)

with the initial condition qA(r,0) ¼ 1. Here wA(r) is a self-consis-

tent field representing the average interactions exerted to the A-

species. On the other hand, the chain propagator of the semi-

flexible B-blocks, qB(r,u,s), satisfies a diffusion-like equation:25

vqBðr; u; sÞ
vs

¼ �bu,VrqBðr; u; sÞ

�
h
wBðrÞ �MðrÞ : uu� I

3

� �i
qBðr; u; sÞ þ

1

2k
V2

uqBðr; u; sÞ;
ðf # s # 1Þ

(2)

with the initial condition qB(r,u,f) ¼ qA(r,f). The propagator

qB(r,u,s) corresponds to the probability of finding the sth B-block

at position r and with an orientation u in an external potential

field wB(r) and an orientational field M(r). The parameter k

represents the bending rigidity, which is nondimensionalized by

N and set as k ¼ 30 to model a rigid B-block, consistent with our

previous study.17 Because the two ends of the diblock copolymer

are distinct, a set of conjugate propagators, q+
A (r,s) (0 # s # f)

and q+
B (r,u,s) (f # s#1), are required to complete the description

of the chain conformations. These conjugate propagators satisfy

the same diffusion equations, eqn (1) and (2), but with different

initial conditions, q+
B(r,u,1) ¼ 1 and qþAðr; f Þ ¼

1

4p

ð
duqþB ðr; u; f Þ.

Finally the partition function of a single diblock copolymer chain

can be obtained as Q ¼ 1

4pV

ð
dr

ð
duqBðr; u; 1Þ. In the above

expressions, all spatial lengths are scaled by the unperturbed

radius of gyration of the diblock copolymer chains, Rg¼ a(N/6)1/2.

Within the SCFT framework, the Helmholtz free energy of

the system is given by:

F

nkBT
¼ �lnQþ 1

V

ð
dr½cNfAfB � wAfA � wBfB

þ 1

2
M : S� xð1� fA � fBÞ�

(3)

where fA(r) and fB(r) are density fields normalized by the local

volume fractions of the A- and B-blocks, and c is the Flory–

Huggins interaction parameter describing the A–B interactions.
This journal is ª The Royal Society of Chemistry 2011
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The orientational order-parameter tensor S(r) and the corre-

sponding self-consistent field M(r) are spatial-dependent,

symmetric and traceless, 3�3 matrices. Finally the function x(r)

is a potential field that ensures the incompressibility of the

system. Minimizing the free energy in eqn (3) with respect to fA,

fB, wA, wB, S, M and x leads to the following SCFT equations

that describe the equilibrium morphology,

wA(r) ¼ cNfB(r) + x(r) (4)

wB(r) ¼ cNfA(r) + x(r) (5)

fAðrÞ ¼
1

Q

ðf

0

dsqAðr; sÞqþAðr; sÞ (6)

fBðrÞ ¼
1

4pQ

ð1

f

ds

ð
duqBðr; u; sÞqþB ðr; u; sÞ (7)

SðrÞ ¼ 1

4pQ

ð1

f

ds

ð
duqBðr; u; sÞqþB ðr; u; sÞ

�
uu� I

3

�
(8)

M(r) ¼ mNS(r) (9)

fA(r) + fB(r) ¼ 1 (10)

The anisotropic interactions between the wormlike blocks are

quantified by the Maier–Saupe mean-field potential in eqn (9),

where m characterizes the strength of the orientational interac-

tion favoring the alignment of the segments. The most time-

consuming step in solving the SCFT equations, eqn (1)–(10), is to

compute the propagators by solving the diffusion-like equations,

eqn (1) and (2). For the Gaussian chain propagator defined in

eqn (1), several efficient numerical methods have been

developed.29–31 However solution of the diffusion equation of

wormlike chains is quite difficult to obtain. In what follows

a hybrid numerical implementation SCFT for wormlike chain

model will be used. Similar to our previous work,17 the Laplacian

on the unit spherical surface, V2
uqB(r,u,s), is implemented using

the finite volume algorithm. On the other hand, all spatial-

dependent functions are expanded in terms of suitable basis

functions,

gðrÞ ¼
X

i

gifiðrÞ (11)

where the basis functions, fi(r) for i ¼ 1,2,3., are chosen such

that they are orthonormal and eigenfunctions of the Laplacian

operators.

1

V

ð
drfiðrÞfjðrÞ ¼ dij; V2

r fiðrÞ ¼ �lifiðrÞ (12)

As a first step of applying the hybrid method, in the current

paper we focus on the liquid-crystalline behavior of lamellar

phases self-assembled from semiflexible-coil diblock copolymer

melts. Therefore all spatial-dependent functions are functions of

z only, and the basis functions for this case can be chosen as

follows:
This journal is ª The Royal Society of Chemistry 2011
fiðzÞ ¼1;
ffiffiffi
2
p

cos

�
2pz

D

�
;
ffiffiffi
2
p

sin

�
2pz

D

�
;
ffiffiffi
2
p

cos

�
4pz

D

�
;

ffiffiffi
2
p

sin

�
4pz

D

�
/

(13)

where D is the period of the ordered phases and z is the spatial

coordinate. The z-dependent functions can be expanded by fi(z)

as,

qAðz; sÞ ¼
X

i

qA;iðsÞ fiðzÞ; qþAðz; sÞ ¼
X

i

qþA;iðsÞ fiðzÞ (14)

qBðz; u; sÞ ¼
X

i

qB;iðu; sÞfiðzÞ; qþB ðz; u; sÞ ¼
X

i

qþB;iðu; sÞfiðzÞ

(15)

fAðzÞ ¼
X

i

fA;i fiðzÞ; fBðzÞ ¼
X

i

fB;i fiðzÞ (16)

wAðzÞ ¼
X

i

wA;i fiðzÞ; wBðzÞ ¼
X

i

wB;i fiðzÞ (17)

SðzÞ ¼
X

i

Si fiðzÞ; MðzÞ ¼
X

i

Mi fiðzÞ (18)

xðzÞ ¼
X

i

xi fiðzÞ (19)

The differential equations for the end-segment distribution

functions become,

vqA;iðsÞ
vs

¼ �liqA;iðsÞ �
X

j

X
k

GijkqA; jðsÞwA;k

qA;ið0Þ ¼ di1

(20)

vqB;iðu; sÞ
vs

¼ �bu
X

j

AijqB; jðu; sÞ þ
1

2k
V2

uqB;iðu; sÞ

�
X

j

X
k

Gijk

h
wB;k �Mk :

�
uu� I

3

�i
qB; jðu; sÞ

qB;iðu; f Þ ¼ qA;iðf Þ
(21)

vqþB;iðu; sÞ
vs

¼ �bu
X

j

Aijq
þ
B; jðu; sÞ �

1

2k
V2

uqþB;iðu; sÞ

þ
X

j

X
k

Gijk

h
wB;k �Mk :

�
uu� I

3

�i
qþB;jðu; sÞ

qþB;iðu; 1Þ ¼ di1

(22)

vqþA;iðsÞ
vs

¼ liq
þ
A;iðsÞ þ

X
j

X
k

GijkqþA; jðsÞwA; k

qþA;iðf Þ ¼ 1
4p

ð
duqþB;iðu; f Þ

(23)

with
Soft Matter, 2011, 7, 929–938 | 931
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li ¼

0 if i ¼ 1�
ip

D

�2

if i even

�
ði � 1Þp

D

�2

if i odd

8>>>>><
>>>>>:

(24)

Aij ¼
1

D

ð
dzfiðzÞVfjðzÞ (25)

Gijk ¼
1

D

ð
dzfiðzÞfjðzÞfkðzÞ (26)

where Gijk is a symmetric tensor, and Aij is an antisymmetric

matrix. The partition function of a single diblock copolymer

chain in the potential fields wA(z), wB(z), M(z) and x(z) is given by

Q ¼ 1

4p

ð
duqB;1ðu; 1Þ. The amplitudes of fA(z), fB(z), wA(z),

wB(z), S(z) and M(z) are given by:

fA;i ¼
1

Q

ðf

0

ds
X

j

X
k

qA; jðsÞqþA; kðsÞGijk (27)

fB;i ¼
1

4pQ

ð1

f

ds

ð
du
X

j

X
k

qB; jðu; sÞqþB; kðu; sÞGijk (28)

wA,i ¼ cN(fB,i�di1(1�f)) + xi (29)

wB,i ¼ cN(fA,i�di1f) + xi (30)

Si ¼
1

4pQ

ð1

f

ds

ð
du
X

j

X
k

qB;jðu; sÞqþB;kðu; sÞ
�

uu� I

3

�
Gijk (31)

Mi ¼ mNSi (32)

fA,i + fB,i ¼ di1 (33)

where xi in eqn (19) is chosen to be xi¼ l(fA,i + fB,i�di1), where l

is large enough to enforce the incompressibility of the system.

Finally, the free energy function of the system can be expressed in

terms of the expansion coefficients:

F

nkBT
¼ �lnQþ

X
i

�
cNfA;ifB;i � wA;ifA;i � wB;ifB;i

þ 1

2
Mi : Si

� (34)

The set of SCFT equations is reduced to those composed of the

expansion coefficients. The potential and orientational fields are

updated using eqn (29), (30) and (32) by means of a linear mixing

of new and old solutions. These steps are repeated until self-

consistency is achieved. In each step, the key procedure is the

solution of propagator coefficients in diffusion-like equations

(20)–(23). Both V2
uqB,i(u,s) and V2

uq
+
B,i (u,s) are calculated by the

finite volume algorithm using the orientation variable u dis-

cretized on the surface of a unit sphere triangulated with Nu¼ 92
932 | Soft Matter, 2011, 7, 929–938
vertexes. The number of basis functions is changed over Ni¼ 13–

25 under different interactions, to ensure that the free energy is

converged in the order of 10�4. Additionally we use Ns ¼ 800

contour points resolving the s dependence, to ensure the dis-

cretization of Ds¼ 1/Ns sufficient to obtain accuracy of the order

of 10�6 in the potential fields (including compositional and

orientational potentials). In this case, it requires an operation

count of O(NsNuN3
i ) and time consumption of 6�30s per Ds step.

The solution for each iteration in a certain period length D and

tilt angle q is proven to rapidly achieve self-consistence within

2000 steps. Finally the equilibrium morphology is obtained

according to the minimization of free energy iterated with respect

to variety of reasonable sizes of the simulation cell and different

initial guess of the orientational direction.

We should note that, the extension to 2D and 3D space is

straightforward by the hybrid numerical approach, without any

complexity in algorithm required to solve SCFT equations. The

basis functions used to expand the spatial dependence generally

take on a form as fj(r) ¼ exp(iGj$r). In the 3D case, the wave

vector Gj is defined by G j ¼ 2p

 
hj

Dx

;
kj

Dy

;
lj

Dz

!
, where Dx,Dy,Dz

are the sizes of the rectangular box in 3D real space, and integers

hj,kj,lj ¼ 0, �1, �2. For simplicity in the 1D case, h¼ k¼ 0, l¼
0, 1, 2. and we split exp(iGj$r) into gjsin(Gj$r) and gjcos(Gj$r) as

in eqn (13). For the case of 3D space, just with the details of Gj,

fj(r) and Aij, Gijk being changed correspondingly. Furthermore,

the algorithm is similar to that of 1D case when introducing h

and k to G, and the computational time is still determined by the

number of basis functions Ni, which depends on the symmetry

and complexity of ordered microstructures. Our preliminary tests

prove this method to converge more rapidly than finite different

techniques for spatial discretization in our previous paper17 and

have high accuracy with a suitable truncation of basis functions

Ni. Further work on this will be done.
Results and discussion

In the following studies the nematic ordering is assumed to be

uniaxial, thus the liquid-crystalline order is described by the

nematic director n, which is along the z-axis for the smectic-A

(q ¼ 0) phase or tilted with an angle from the z-axis for the

smectic-C (q s 0) phase. The orientational order can be quan-

tified by the zz component of the orientational tensor S(z), i.e.,

Szz(z). When normalized by the volume fraction of the wormlike

blocks fB(z), Szz(z) varies from 0 (representing random orien-

tation of the wormlike blocks) to 1 (representing complete

alignment of the wormlike blocks). Deviation of Szz(z) from

unity characterized the degree of disalignment of the wormlike

blocks. A distinct transition from the isotropic phase (Szz(z) ¼ 0)

to the nematic phases (Szz(z) s 0) can be distinguished from the

behavior of the orientation order parameter. Furthermore,

monolayer, bilayer and folded smectic phases of the wormlike

blocks are obtained, indicating different packing geometry of the

semiflexible blocks. We should note that these complex 1D

ordered phases were not found in our previous study of rod-coil

using Onsager excluded volume interaction,17 and hence their

dependence on parameters including cN, mN, f and b will be

systematically discussed in the following subsections.
This journal is ª The Royal Society of Chemistry 2011
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A. Interplay between A-B repulsion and liquid-crystalline

ordering: the case of m/c ¼ 4

The phases and phase transitions of semiflexible-coil diblock

copolymers depend strongly on the repulsion between the

wormlike and coil blocks characterized by the Flory–Huggins

parameter c and the orienting interaction characterized by the

Maier–Saupe parameter m. In this subsection the case of strong

orienting interaction is considered by examining the phase

diagram m/c ¼ 4 with varying cN and f. This particular ratio of

m/c¼ 4 was used in a previous study by Pryamitsyn and Ganesan

for rod-coil diblock copolymers,28 so a direct comparison with

this previous work can be made. Phase diagrams of the semi-

flexible-coil diblock copolymers with three different values of b¼
2, b ¼ 4 and b ¼ 10 are constructed, as presented in Fig. 1.

Isotropic and nematic phases. The isotropic region in the phase

diagram shown in Fig. 1 remains almost unchanged for the

different values of b. The nematic region is quite narrow and

shrinking with the increase of b. This behavior is in agreement

with the prediction of Pryamitsyn and Ganesan28 for the case of

rigid rod-coil diblock copolymers. On the other hand, rod-coil

block copolymers can exhibit a wider nematic region under

relatively strong orientational interactions, as has been seen both

in experiments15 and Onsager theoretical model.17,26 The narrow

nematic region shown in Fig. 1 indicates that the ratio of m/c ¼ 4
Fig. 1 Phase diagrams of rod-coil block copolymers at m/c ¼ 4. (a) b ¼ 2;

boundaries of isotropic–nematic, isotropic–smectic, and nematic–smectic tra

monolayer smectic-A (mA) in (a), monolayer smectic-C (mC) from monolay

This journal is ª The Royal Society of Chemistry 2011
may be much smaller than that corresponding to the experi-

mental systems (with a wider nematic region) in the weak

segregation limit. This point will be further investigated in the

following discussions.15

Order–disorder transitions. As the temperature is lowered (or

the cN and mN are increased), order–disorder transitions (ODT),

corresponding to phase transitions from the spatially disordered

(isotropic or nematic) phases to spatially ordered (smectic)

phases, can be induced. Within the mean-field theory, the

nematic–smectic transition is generally continuous and the

isotropic–smectic transition is a first-order one. The phase

diagrams shown in Fig. 1 reveal that the ODT is relatively

insensitive to b, with a small difference in the nematic–smectic

transition at relatively low volume fractions of the coils. It is

interesting to notice that as b decreases from b ¼ 10 to b ¼ 2, the

nematic region expands slightly, resulting in a higher cNODT for

the nematic–smectic phase transition. This observation is in

accordance with the prediction by Matsen and Barrett27 about

the dependence of cNODT on the size asymmetry parameter

y ¼
ffiffiffi
6
p

b�1, in which the nematic–smectic transition is relatively

insensitive to y until y z 1 (b ¼ 2.45).

Order–order transition. In the current study only 1D ordered

phases are considered. Therefore, the order–order transitions

(OOT) include smectic-A to smectic-C with various
(b) b ¼ 4; (c) b ¼ 10. Solid lines are a guide to the eye denoting phase

nsitions. Dashed lines are used to separate bilayer smectic-A (bA) from

er smectic-A (mA) in (b) and (c).
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microstructures of rod molecules. As shown in the phase

diagrams (Fig. 1), a number of ordered microstructures of the

smectic phases, including monolayer smectic-A (mA), monolayer

smectic-C (mC) and bilayer smectic-A (bA), have been observed

for the parameters examined in this section. For the monolayer

smectic phases, the head and tail of the rod-like molecules are

randomly distributed, interdigitating within the layer containing

the wormlike blocks. This phase was referred as the partial

bilayer structures by Duch and Sullivan.24 For the bilayer

structures, the rod-like blocks are arranged antiparallelly, i.e.

end-to-end in the rod-layers. Various architectures for the

smectic phases can be clearly distinguished by the spatial distri-

bution of the individual rod segments 4(z,s), which is defined by,

4ðz; sÞ ¼ 1

4pQ

ð
duqBðz; u; sÞqþB ðz; u; sÞ ðf # s # 1Þ (35)

Monolayer smectic phases. For the case of b ¼ 4 and b ¼ 10,

the monolayer structures can be classified into monolayer

smectic-A (mA) with q ¼ 0 and monolayer smectic-C (mC) with

q s 0. The occurrence of the mA and mC phases in the phase

space of cN (mN) vs. f depends on the competition between the

microphase separation and the orientational interaction. In

order to provide insight into the architectures of monolayer

smectic phase, a moderate value of b¼ 4 in Fig. 1(b) is used as an

example to illustrate the structure and phase behavior of the

system.

Fig. 2(a) presents the profiles of mA at cN ¼ 10 (m/c ¼ 4) with

f ¼ 0.4. The density of the rod-like blocks reaches its saturation

value in the rod-rich area, thus the coil segments are expelled

from this region completely. At the same time, the orientation

order parameter Szz(z) approaches unity within the rod-rich area,

indicating a strong degree of orientation order. Information

about the packing of the rod-like blocks is revealed from the

spatial distribution of the end segment of the rods, 4(z,s ¼ 1),

which is shown in Fig. 2. For the current case, two peaks are

found at the lamellar interface and the average distance between

these two peaks is slightly smaller than the contour length of the

rod-like blocks, indicating an almost complete interdigitation

between the rods and the formation of monolayer smectic-A

structure. This observation is in agreement with the prediction of

partial bilayer by Duch and Sullivan24 using the Onsager

excluded-volume interaction. Furthermore, the lamellar period
Fig. 2 Plots of fB(z), 4(z,s ¼ 1) (rod terminal) and Szz(z)for monolayer

smectic phase under b ¼ 4 and m/c ¼ 4. (a) monolayer smectic-A (mA)

with f¼ 0.4, cN¼ 10 and D¼ 3.6Rg; (b) monolayer smectic-C (mC) with

f ¼ 0.6, cN ¼ 14, D ¼ 3.2Rg and q ¼ 30�.
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of mA at f ¼ 0.4 decreases from D ¼ 4.8Rg at cNODT ¼ 5 to D ¼
3.4Rg at cN ¼ 10, indicating a better ordering of the rod-like

blocks at higher Maier–Saupe interaction and stronger separa-

tion between the rods and coils. It is also noticed that the scaling

behavior is in agreement with the prediction by Matsen and

Barrett (D/bN1/2 � y�1, viz., D/Rg � b).27

For the case of coil composition f ¼ 0.6, the stretching energy

of the coil blocks becomes a dominant factor, which favors

a large interfacial area per chain. As a result, a smectic-C phase

with a non-zero tilt angle q s 0 appears in order to increase the

interfacial area, as shown in Fig. 2(b). These structural changes

are illustrated in the example shown in Fig. 2(b), in which the

smectic-C phase has a lamellar period of D ¼ 3.2Rg and a tilt

angle of q ¼ 30� at cN ¼ 14. The structure of the mC phase is

characterized by the spatial density distribution of the end

segment of rods, 4(z,s ¼ 1), shown in Fig. 2(b). The lamellae

period is related to the tilt angle q, i.e., D/Rg � bcosq, indicating

that the period of the monolayer smectic phases (mA and mC) is

largely determined by the parameter b. Furthermore, it is noticed

that the tilt angle tends to decrease as cN (mN) is increased, until

it vanishes (q ¼ 0), leading to a re-entrance mC–mA transition as

shown in Fig. 1(b). This re-entrance transition has been consid-

ered in previous theory.32 The observation of the series of tran-

sitions from isotropic to smectic-A and then to smectic-C and

finally to smectic-A has also been predicted by Matsen and

Barrett27 in rod-coil copolymers with y ¼ 0.5, corresponding to

b x 5 in the current model.

Bilayer smectic-A phases (bA). For the case of b ¼ 2, two

smectic-A phases (mA and bA) are observed as the ordered

structures, as shown in Fig. 1(a). The bA phase generally occurs

near the ODT, or the nematic–smectic and isotropic–smectic

transition lines, where the rods and coils are partially miscible

forming diffuse interfaces. With the increasing of mN(cN), the

bA phase can continuously transform to the mA phase when the

rod-like blocks packing changes continuously from end-to-end

arrangement to complete interdigitation. For simplicity the

partial interdigitation configuration is referred as monolayer

structure in the current paper.

Fig. 3 provides a comparison of the bA profiles at two different

volume fractions, f¼ 0.4 and f¼ 0.6. First of all, the distribution

of the rod-end segments, 4(z,s ¼ 1), exhibits one peak in the

middle of the rod-rich domain, clearly showing an end-to-end

arrangement of the rod-like blocks. Secondly the distribution of
Fig. 3 Plots of fB(z), 4(z,s ¼ 1) (rod terminal) and 4(z,s ¼ f) for bilayer

smectic-A phases (bA) under b ¼ 2 and m/c ¼ 4. (a) f ¼ 0.4, cN ¼ 7 and

D ¼ 3.2Rg; (b) f ¼ 0.6, cN ¼ 12 and D ¼ 2.8Rg.

This journal is ª The Royal Society of Chemistry 2011
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Fig. 4 Phase diagrams of rod-coil block copolymers with m/c ¼ 1. (a)

b ¼ 4; (b) b ¼ 10. Solid lines are a guide to the eye denoting phase

boundaries. Different triangles represent various smectic phases such as

monolayer smectic-A (mA), monolayer smectic-C (mC) and bilayer

smectic-C (bC).
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the rod-coil linking segments, 4(z,s ¼ f), has two peaks

approximately located at the rod-coil interfaces. The distance

between these two peaks is slightly smaller than twice the rod

length, suggesting some degree of disalignment of the rods in the

bA structure, which increases the interfacial area per chain

favoring coil-stretching energy than the case of well-aligned rods

under large mN. The observation of the bilayer smectic phases for

b ¼ 2 suggests that the rod-like molecules with larger diameter

tend to form end-to-end arrangement, in contrast to the thinner

ones such as b ¼ 4 and b ¼ 10. This size asymmetry effect can be

understood from the competition between interfacial energy and

coil-stretching entropy.

However there exist some discrepancies in the bA and mA

regions between Fig. 1(a) and previous SCFT studies,27,28 which

may be attributed to the differences in chain models for the rod-

like blocks and different orientational interaction treatments.

Semenov33 and Matsen and Barrett,27 as well as Pryamitsyn and

Ganesan28 assumed completely rigid rods, thus ignoring the

conformational entropy of the rod-like blocks. Based on the

Semenov–Vasilenko model and SCFT, Matsen and Barrett

assumed a ‘‘hard’’ Flory interaction between the rods and

observed the bA phase at extremely large cN and small f.

Pryamitsyn and Ganesan observed some metastable bilayers at

relatively small cN and f with a system of large b. In contrast, the

model system in current study considers wormlike chain

conformation with large rod diameter (b¼ 2) and assumes m/c¼
4, where the orientational interaction is more significant than

microphase separation. Therefore in the weak-segregation

regime (small cN and hence small mN), the rod-like blocks

exhibit some degree of chain bending fluctuation and disalign-

ment along the nematic director leading to interfacial area per

chain. This can be approved by the zz component of the order

parameter tensor S(z) (figures of Szz(z) are not shown here),

where the overall orientational degree in the bilayer decreases

from the rod-rich area to the rod-coil interface, different from the

case of completely rigid rods. In this case, therefore enough large

interfacial area per chain favors the coil-stretching entropy and

stabilizes the bA structure even at relatively high coil volume

fraction such as f ¼ 0.6, as shown in Fig. 3(b). However with the

increasing of mN, the rods are well oriented leading to an obvious

decrease of surface area per chain in bA. As a result, the rods

tend to interdigitate with each other in order to increase the

surface area for coil-stretching entropy, leading to a trans-

formation from bA to mA. The bA to mA transition in this case

is driven by the Maier–Saupe interactions between rods and

relatively small b, while cN effect can be ignored.
B. Comparable A–B repulsion and orientational interactions

(m/c ¼ 1)

In this subsection the case with compatible rod-coil repulsion

and orientational interaction (m/c ¼ 1) is considered. Phase

diagrams with m/c ¼ 1 for b ¼ 4 and b ¼ 10 are shown in Fig. 4.

In contrast to the phase diagrams with m/c ¼ 4 (Fig. 1), the

weaker orientational interaction leads to the formation of

a lamellar phase without a liquid-crystalline order. This lamellar

phase is similar to the lamellae found in the coil-coil dilbock

copolymers. When mN is increased, the rod-like blocks can

acquire a nematic order as shown in the last subsection. This
This journal is ª The Royal Society of Chemistry 2011
behavior is consistent with the predictions by Landau expan-

sions26 and experimental observations.16 The lamellar region is

larger in Fig. 4(b) compared to that in Fig. 4(a), due to the lower

ODT cNODT for the isotropic–lamellar transition for b¼ 10 than

that for b ¼ 4. The lamellar structure disappears with the

decreasing of f, leading to a triple point ftri at which the isotropic,

lamellar and smectic phases coexist. When the coil composition is

less than the triple point, f<ftri, a direct transition from the

isotropic phase to the smectic phase occurs. With further

decrease of f, the isotropic phase directly transforms to the

nematic phase due to the strong ordering effects of the rod-like

blocks. The narrow nematic region and the size asymmetry effect

on the nematic region are similar to the case of m/c ¼ 4. More-

over, the lamellar period is obviously larger than that of the

corresponding coil-coil diblock copolymers. For example, in

the case of b ¼ 4, with the increasing of cN and hence mN, the

lamellar spacing increases from 3.0Rg to 4.4Rg for f ¼ 0.6 and

2.8Rg to 4.0Rg for f ¼ 0.7, respectively. According to the spatial

distribution of the individual B segments 4(z,s), we can probe

into the architecture of the B blocks in the lamellae. For brevity

the calculation results are not shown here, in which we found that

the terminal and middle segments of the B blocks exhibit

a diffusive distribution in the centre of rod-rich area under small

mN (cN), suggesting nearly random configuration of the B block

like coils. As the enhancement of orientational interactions, the

B-blocks stretch obviously and align along the nematic direction

n, as shown by the two peaks in the spatial distribution of the end

of rods 4(z,s¼ 1) and the increasing of order parameter �Szz. This

leads to an expansion of rod domain size, and correspondingly

the increasing of the lamellar period.

One interesting new phase from the current SCFT study is

a structure composed of bilayer smectic-C (bC), which is found

for b ¼ 4 as shown in the phase diagram (Fig. 4(a)). In this phase

the rod-like blocks pack in an end-to-end fashion and tilt away

from the z-axis. This phase has not been found in previous SCFT

studies with the assumption of completely rigid rods.27,28 The

phase diagram in Fig. 4(a) exhibits three smectic phases including

mA, mC and bC. In general, the system can undergo a series of

transitions, from mA to mC, and then to bC phase, with the

increasing of cN and mN. These phase transitions are driven by

the competition between the coil-stretching entropy and inter-

facial energy. When the coil-stretching entropy dominates, the

mC phase is more stable as it can supply larger interfacial area;
Soft Matter, 2011, 7, 929–938 | 935
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while bC phase is preferred when the interfacial energy domi-

nates in strong-segregation regime. This is different from the

observation of bA in weak-segregation regime in Fig. 1(a), where

the Maier–Saupe orientational interaction is dominant for m/c ¼
4. Therefore we conclude that the interplay between mN and cN

combined with b can largely affect the competition between coil-

stretching entropy and interfacial energy, leading to the mono-

layer and bilayer phases occurring in different region of the phase

diagram. Moreover, mC and bC phases disappear at f ¼ 0.2 and

f ¼ 0.7, respectively. The mC phase occupies a large area of the

phase diagram for b ¼ 10 in Fig. 4(b) whereas the bC phase

occupies a large area for b ¼ 4 in Fig. 4(a). This behavior is

similar to the case of m/c ¼ 4 shown in Fig. 1.
C. When microphase separation is turned off (cN ¼ 0)

In this subsection the case cN ¼ 0 is examined. In this case the

repulsion between the rod-like and coil blocks is turned off, thus

only the Maier–Saupe orientational interaction and chain

rigidity are responsible for the phase behavior. The phase

diagrams in the mN vs. f plane for this case are presented in Fig. 5

with b ¼ 4 in Fig. 5(a) and b ¼ 10 in Fig. 5(b). Fig. 5 shows that,

in the absence of the block repulsion, the system can exhibit

various liquid crystal phases including isotropic, nematic and

smectic phases. Phase transitions can be induced by the increase

of the Maier–Saupe orientational interaction mN. The nematic

phase in the phase diagram in Fig. 5 occupies a larger region

when compared with Fig. 1 for m/c ¼ 4 and Fig. 4 for m/c ¼ 1.

This result is qualitatively in agreement with that of Landau free

energy theory26 and our previous SCFT studies of rod-coil block

copolymers with Onsager excluded volume interactions17 and by

Duchs and Sullivan,24 as well as experimental results14,15 in weak

segregation limit (quite small |cN|). To our knowledge, the above

observation is the first demonstration of typical liquid-crystalline

behavior from semiflexible-coil diblock copolymers only with

Maier–Saupe orientational interaction mN.

As shown in Fig. 5, the isotropic–nematic and isotropic–

smectic transitions (LCT) are not sensitive to the size asymmetry

parameter b. On the other hand, the cNODT for the nematic–

smectic transition increases sharply as b decreases from b¼ 10 to

b ¼ 4 at small f, leading to an enlarged nematic region in the

phase diagram at b¼ 4. Furthermore, only smectic-A is observed

in Fig. 5(a) for b¼ 4 compared to the occurrence of both smectic-
Fig. 5 Phase diagrams of two rod-coil systems as a function of mN and f,

with an assumption of cN ¼ 0. (a) b ¼ 4; (b) b ¼ 10. Lines making phase

boundaries are a guide to the eye only and different triangles represent

various smectic phases such as monolayer smectic-A (mA), monolayer

smectic-C (mC), folded smectic-A (fA) and folded smectic-C (fC).
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A and smectic-C phases in Fig. 5(b) for b¼ 10, which is similar to

that in Fig. 1(b) and Fig. 1(c). The phase transition between

smectic-A and smectic-C for b ¼ 10 largely depends on the ratio

m/c. When the orientational interactions between the rod-like

blocks dominate with the absence of rod-coil repulsion, the

smectic-A to smectic-C transition is sensitive to the coil

composition f, exposing a phase boundary at approximately f ¼
0.5–0.6 as shown in Fig. 5(b); meanwhile when the rod-coil

repulsion is non-zero, the smectic-A to smectic-C transition tends

to be more sensitive to cN. This difference indicates that not only

b but also m/c affects the smectic microstructures and order–

order transitions of the semiflexible-coil diblock melts.

One interesting phase is the folded smectic microstructure

observed at relatively large volume fraction of the rod-like blocks

(1 � f $ 0.4) and strong Maier–Saupe interactions (Fig. 5).

Similar structures have been identified in polymeric rod-coil

systems from earlier experimental studies,9,34 but have not been

predicted in previous theoretical studies including our own

study17 using the Onsager excluded volume interaction. The

folded configuration for the rod-like blocks based on the

wormlike chain model resembles the crystalline behavior of

semiflexible polymers.25 Fig. 6 shows typical density profiles of

folded smectic-A (fA) phase for b ¼ 10. The domain size of the

rod-rich area can be estimated by computing the spatial distri-

bution of individual rod segments 4(z,s). For f ¼ 0.4 in Fig. 6(a),

the rod-like block folds twice according to the distance between

two peaks of 4(z,s ¼ f), which is 2.18Rg across the rod domain

and approximately 1/3 of the rod contour length 6.0Rg. Mean-

while density distribution of the end segments of the rod-like

blocks 4(z,s¼ 1) exhibits a broad distribution and that of the mid

segments 4(z,s¼ (f + 1)/2) exhibits one peak in the middle of rod-

rich domain. The insets of Fig. 6(a) and 6 (b) show the schematic

pictures of fA: the fold number decreases as the rod volume

fraction increases, i.e., fold once with 1 � f ¼ 0.5 in Fig. 6(b) and

fold twice with 1 � f ¼ 0.6 in Fig. 6(a) under the same mN. This

result is qualitatively in agreement with the observation in

experiments with the increasing of the helix rod length.9 Further

decreasing of volume fraction of rods (such as 1 � f ¼ 0.3) will

lead to the appearance of mC instead of folded smectic phase in

Fig. 5(b). Furthermore, the average fold number per rod-like

block is found to increase as the orientational interaction

becomes stronger (figures not shown here). This behavior can be

attributed to the fact that a stronger Maier–Saupe interaction

leads to tighter packing of the rod-like blocks. However this will

decrease the area per chain thus increase the stretching energy of
Fig. 6 Plots of fB(z), 4(z,s ¼ f), 4(z,s ¼ (f + 1)/2) and 4(z,s ¼ 1) for

folded smectic-A (fA) phases under b ¼ 10, mN ¼ 90 and cN ¼ 0. (a) f ¼
0.4 and D ¼ 3.4Rg; (b) f ¼ 0.5 and D ¼ 5.0Rg.

This journal is ª The Royal Society of Chemistry 2011
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the coil, similar to the case of bA occurring at weak-segregation

in Fig. 1(a). Folded rod-like blocks will maintain the same

packing density while providing larger interfacial area, thus

releasing the coil stretching frustration. Besides the observation

of the fA phase, a folded smectic-C (fC) phase appears for b¼ 10

at high f, in which the rod-like blocks fold and also tilt an angle to

the lamellar normal direction. To our knowledge, the occurrence

of the fC phase has not been observed in previous theoretical and

experimental studies on rod-coil systems.
Conclusions

In this work a hybrid numerical approach to solve the SCFT

equations of a wormlike chain model has been developed. In this

approach, the spatial-dependent functions in the theory are

expanded in terms of a series of orthonormal eigenfunctions. The

spectral-method restricts the solutions to a particular symmetry,

thus greatly improving the numerical efficiency and accuracy.

The diblock copolymers are modeled by a wormlike chain con-

nected to a Gaussian chain, and the orientational interaction

between the rod-like segments and the repulsive interaction

between the different blocks are described by Maier–Saupe and

Flory–Huggins interactions, respectively. As a first application

of this method, one-dimensional ordered phases of semiflexible-

coil diblock copolymer melts have been examined and corre-

sponding phase diagrams have been constructed. Comparing

with our previous study,17 the current work presents new

developments in methodology and phase behavior of semi-

flexible-coil diblock copolymers.

In contrast to the corresponding coil-coil diblock copolymers,

the phase behavior and ordered morphologies of the rod-coil

block copolymers depend on the coil composition f, the block

repulsion characterized by cN, the Maier–Saupe orientational

interaction mN, and the size asymmetry parameter b between the

rods and coils. In order to focus on the two main parameters, m/c

and b, on the phase behavior of the system, phase diagrams as

a function of f and cN are constructed. A variety of smectic

microstructures are found to exist in the system. A few generic

features of the phase behavior can be obtained from these phase

diagrams. First of all, the rod-coil repulsion, characterized by the

Flory-Huggins interaction parameter cN, usually promotes the

formation of smectic structures with a narrow nematic region

just above the ODT. The interplay between microphase separa-

tion and orientational interaction characterized by the ratio m/c

influences the competition between rod-coil interfacial energy

and coil-stretching entropy, which plays an important role in the

ordered microstructures including smectic-A, smectic-C with

monolayered and bilayered rods. Therefore, a bilayer smectic-A

(bA) at weak-segregation and a bilayer smectic-C (bC) structure

at strong-segregation corresponding to large and small m/c are

observed respectively. These phases were observed in experi-

mental systems but previous theoretical simulations completely

rigid rods have not been able to predict them. Secondly, we have

utilized the Maier–Saupe interaction to model the ordering

effects with the rod orientation denoted by u on a unit sphere in

a 3D Euclidean space. To the best of our knowledge, this is the

first time various smectic structures for a system with Maier–

Saupe interactions mN and in the absence of block–block

repulsion, i.e., cN ¼ 0, have been predicted. In this case, the
This journal is ª The Royal Society of Chemistry 2011
nematic region is observed to occupy a larger area, in contrast to

the case with the block repulsions (cN s 0). In particular,

a smectic microstructure with folded configuration for the rod

block appears under strong orientational interactions in accor-

dance with the observation of experiments by a polymer system

with helix rods, which resembles the crystalline behavior of

semiflexible polymers. Finally, the size asymmetry parameter

b plays an important role in the phase behavior. In general, large

b prefers monolayer and smectic-C structures, largely due to the

increased interfacial area per chain in these phases, whereas small

b prefers bilayer and smectic-A in order to decrease the interfa-

cial energy. In future work, the hybrid numerical SCFT model

will be extended to include two and three-dimensional structures

although non-lamellar structures occupy minority region in the

phase diagram of semiflexible block copolymers.
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